Translating Embeddings for Modeling Multi-relational Data Antoine Bordes,* Nicolas Usunier,* Alberto Garciá-Duran,* Jason Weston° & Oksana Yakhnenko°

One Minute Overview

• Knowledge Bases (KBs) are massive amounts of structured data.

• Main issue: KBs are hard to manipulate.

- Very large dimensions: $10^5 10^8$ entities, $10^4 10^6$ relationships;
- Noisy/incomplete: missing/wrong relations/entities.

• Here: Encode KBs in vector spaces, in which rel. are translations.

- Simple model with few parameters designed to encode similarities;
- Easy to train on large-scale databases;
- Strong results on real-world data.

Muti-relational Data

Knowledge Bases:

• Each node = an entity. • Each edge = a relation. • A relation = (h, r, t): h = head (or subject), • r = relationship, • t = tail (or object).

Nodes w/o features.

Examples:

Freebase, YAGO, IMDB, GeneOntology, UniprotKB, WordNet, etc.

Embedding-based Framework

This work: relationships = translations on entity embeddings. Natural representation for hierarchical relationships.

- Recent work on word embeddings (Mikolov et al. 13): there may exist embedding spaces in which relationships are represented by translations.
- Few parameters to encode each relationship.

Related Work

- Tensor factorization (e.g. (Harshman et al., 94)).
- Explicit modeling of missing data (e.g. (Gao et al., 11))
- Markov-logic Networks (e.g. (Kok et al., 07))
- Extension of SBMs (e.g. (Kemp et al., 06; Sutskever et al., 10)).
- Spectral clustering for undirected graphs (e.g. (Dong et al., 11)).
- Collective matrix factorization (e.g. (Nickel et al., 11)).
- Energy-based learning (e.g. (Bordes et al., 11,13), (Socher et al. 13)).

*Heudiasyc, UMR CNRS 7253, Université de Technologie de Compiègne, France °Google, 111 8th Avenue, New York, NY. USA

Jane

Pat

Translating Embeddings – TransE

Learning Representations:

- Entities are represented by embeddings in \mathbb{R}^{k} .
- Relationships = similarity operators between heads/tails.
- We learn d(h, r, t) = dissimilarity measure depending on r.

Relationships as Translations:

- We would like that $h + r \approx t$.
- We define the dissimilarity measure:

 $d(h, r, t) = ||h + r - t||_2^2$

Note: d(.) can also use L_1 distance instead.

• We learn *h*,*r* and *t* using SGD to minimize the ranking loss:

$$\mathcal{L} = \sum_{(h,r,t)\in \mathcal{S}} \sum_{(h',r,t')\in \mathcal{S}'_{(h,r,t)}} \Big[\gamma + d(h,r) \Big]$$

 $((h,r,t),(h',r,t')) \in T_{batch}$

Training Algorithm:

input Training set $S = \{(h, r, t)\}$, entities and rel. sets N and L, margin γ , embeddings dim. k. 1: initialize $r \leftarrow uniform(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each $r \in L$

- $\boldsymbol{r} \leftarrow \boldsymbol{r} / \| \boldsymbol{r} \|$ for each $r \in L$ 2:
- $\mathbf{e} \leftarrow uniform(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each entity $\mathbf{e} \in N$ 3:
- 4: loop
- $\mathbf{e} \in \mathbf{e} / \|\mathbf{e}\|$ for each entity $\mathbf{e} \in \mathbf{N}$
- $S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b$
- $T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets
- for $(h, r, t) \in S_{batch}$ do 8
- $(h', r, t') \leftarrow \text{sample}(S'_{(h, r, t)}) // \text{sample a corrupted triplet}$ 9
- $T_{batch} \leftarrow T_{batch} \cup \left\{ \left((h, r, t), (h', r, t') \right) \right\}$ 10:
- end for 11:
- Update embeddings w.r.t. 12:
- 13: end loop
- Example Predictions

WALL-E

_has_genre

Animation Computer animation Comedy film Adventure film **Science Fiction** Fantasy Stop motion Satire

J. R. R. Tolkien

Lloyd Alexander **Terry Pratchett**

C. S. Lewis

Roald Dahl

Jorge Luis Borges Stephen King

	Entities	Relationships	Train. Ex.	Valid. Ex.	Test Ex.
Freebase15k	14,951	1,345	483,142	50,000	59,071
Freebase1M	1×10 ⁶	23,382	17.5×10^{6}	50,000	177,404

Link prediction: in a ranking evaluation setting.

On Freebase1M, TransE predicts 34% in the Top-10.

Detailed results by category of relationship:

Task	Predicting head				Predicting tail			
Rel. category	1-to-1	1-to-M.	Mto-1	Mto-M.	1-to-1	1-to-M.	Mto-1	Mto-M.
Unstructured	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE (Bordes et al., 11)	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(linear) (Bordes et al., 13)	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(bilinear) (Bordes et al., 13)	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

Learning new relationships with few examples:

Code+Data

Related material is available from http://goo.gl/0PpKQe.

Acknowledgements

This work was carried out within the Labex MS2T (ANR-11-IDEX-0004-02), and funded by the French Nat. Agency for Research (EVEREST-12-JS02-005-01).