Translating Embeddings for Modeling Multi-relational Data

Antoine Bordes, ${ }^{\star}$ Nicolas Usunier,* Alberto Garciá-Duran, ${ }^{\star}$ Jason Weston ${ }^{\circ}$ \& Oksana Yakhnenko

One Minute Overview
Knowledge Bases (KBs) are massive amounts of structured data.

- Main issue: KBs are hard to manipulate
- Very large dimensions: $10^{5}-10^{8}$ entities, $10^{4}-10^{6}$ relationships;
- Noisy/incomplete: missing/wrong relations/entities.
- Here: Encode KBs in vector spaces, in which rel. are translations - Simple model with few parameters designed to encode similarities;

Easy to train on large-scale databases

- Strong results on real-world data.

Muti-relational Data

Knowledge Bases

- Each node = an entity.
- Each edge = a relation

A relation $=(h, r, t)$

- $h=$ head (or subject)
- $r=$ relationship,
- $t=$ tail (or object)

Nodes w/o features.
Examples:
Freebase, YAGO, IMDB, GeneOntology, UniprotKB, WordNet, etc.

Austin

Embedding-based Framework
This work: relationships = translations on entity embeddings. - Natural representation for hierarchical relationships.

- Recent work on word embeddings (Mikolov et al. 13): there may exist embedding spaces in which relationships are represented by translations. - Few parameters to encode each relationship.

Related Work

- Tensor factorization (e.g. (Harshman et al., 94)).
- Explicit modeling of missing data (e.g. (Gao et al., 11)
- Markov-logic Networks (e.g. (Kok et al., 07))
- Extension of SBMs (e.g. (Kemp et al., 06; Sutskever et al., 10)).
- Spectral clustering for undirected graphs (e.g. (Dong et al., 11)).
- Collective matrix factorization (e.g. (Nickel et al., 11)).
- Energy-based learning (e.g. (Bordes et al., 11,13), (Socher et al. 13)).

Translating Embeddings - TransE

Learning Representations:

- Entities are represented by embeddings in \mathbb{R}^{k}.
- Relationships = similarity operators between heads/tails.
- We learn $d(h, r, t)=$ dissimilarity measure depending on r

Relationships as Translations:

- We would like that $\boldsymbol{h}+\boldsymbol{r} \approx \boldsymbol{t}$.

minimize the ranking loss:

$$
\mathcal{L}=\sum_{(h, r, t) \in S} \sum_{\left(h^{\prime}, r, t^{\prime}\right) \in S_{(h, r, t)}^{\prime}}\left[\gamma+d(h, r, t)-d\left(h^{\prime}, r, t^{\prime}\right)\right]
$$

Training Algorithm:

input Training set $S=\{(h, r, t)\}$, entities and rel. sets N and L, margin γ, embeddings dim. k

$$
: \text { initialize } r \leftarrow \text { uniform }\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right) \text { for each } r \in L
$$

$$
\begin{aligned}
& \leftarrow \leftarrow \boldsymbol{r} /\|\boldsymbol{r}\| \text { for each } r \in L \\
& z \leftarrow \text { uniform }\left(-\frac{6}{\sqrt{k}} \frac{\cdot,}{\sqrt{k}} \text { for each entity } e \in \Lambda\right.
\end{aligned}
$$

loop
$\mathbf{e} \leftarrow \mathbf{e} /\|\mathbf{e}\|$ for each entity $e \in N$
$S_{\text {patch }} \leftarrow$ sample $(S, b) / /$ sample a minibatch of size b $T_{\text {batch }} \leftarrow \emptyset / /$ initialize the set of pairs of triplets
for $(h, r, t) \in S_{\text {batch }}$ do
$S_{(h, t)}^{\prime} / /$ sample a corrupted triplet
$T_{\text {batch }} \leftarrow T_{\text {batch }} \cup\left\{\left((h, r, t),\left(h^{\prime}, r, t^{\prime}\right)\right)\right\}$
12: Update embeddings w.r.t. $\sum \nabla\left[\gamma+d(h, r, t)-d\left(h^{\prime}, r, t^{\prime}\right)\right]_{+}$
13: end loop

Example Predictions

WALL-E

Experiments
Data:

Entities Relationships Train. Ex. Valid. Ex. Test Ex		Entities	Relationships Train. Ex. Valid. Ex. Test Ex			
Freebase15k	14,951	1,345	483,142	50,000	59,071	$\begin{array}{lllllll}\text { Freebase1M } & 1 \times 10^{6} & 23,382 & 17.5 \times 10^{6} & 50,000 & 177,404\end{array}$

Link prediction: in a ranking evaluation setting. On Freebase15k:

On Freebase1M, TransE predicts 34\% in the Top-10.

Detailed results by category of relationship:

Task	Predicting head				Predicting tail			
Rel. category	1-to-1	1-to-M.	M.-to-	-to	1-to-1	-to-M.	M.-to-1	M.-to-M
Unstructured	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE (Bordes et al., 11)	35.6	62.6	17.2	37.5	34.9	14.6	68	41.3
SME(linear) (Bordes et al., 13)	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(bilinear) (Bordes et al., 13)	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.
ransE								

Learning new relationships with few examples:

Performance for learning 40 new relationships.

Code+Data

Related material is available from http://goo.gl/OPpKQe.

Acknowledgements

This work was carried out within the Labex MS2T (ANR-11-IDEX-0004-02), and funded by the French Nat. Agency for Research (EVEREST-12-JS02-005-01).

