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Abstract

Many Knowledge Bases (KBs) are now readily available and
encompass colossal quantities of information thanks to either
a long-term funding effort (e.g. WordNet, OpenCyc) or a col-
laborative process (e.g. Freebase, DBpedia). However, each
of them is based on a different rigid symbolic framework
which makes it hard to use their data in other systems. It
is unfortunate because such rich structured knowledge might
lead to a huge leap forward in many other areas of Al like nat-
ural language processing (word-sense disambiguation, natu-
ral language understanding, ...), vision (scene classification,
image semantic annotation, ...) or collaborative filtering. In
this paper, we present a learning process based on an inno-
vative neural network architecture designed to embed any of
these symbolic representations into a more flexible continu-
ous vector space in which the original knowledge is kept and
enhanced. These learnt embeddings would allow data from
any KB to be easily used in recent machine learning meth-
ods for prediction and information retrieval. We illustrate our
method on WordNet and Freebase and also present a way to
adapt it to knowledge extraction from raw text.

Introduction

A fundamental challenge for Al has always been to be able
to gather, organize and make intelligent use of the colos-
sal amounts of information generated daily (Davis, Shrobe,
and Szolovits 1993). Recent developments in this area
concern the building of large web-based Knowledge Bases
(KBs), special kinds of relational database especially de-
signed for knowledge management, collection, and retrieva
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Ronan Collobert
IDIAP
Rue Marconi 19
Martigny, Switzerland

Yoshua Bengio

Département IRO
Universié de Montéal
Montréal. QC, Canada

be useful in many other Al areas like in Natural Language
Processing (NLP) for word-sense disambiguation or natural
language understanding, in computer vision for sceneielass
fication or image semantic annotation, or in collaboratilve fi
tering. Even if WordNet is widely used in NLP (e.g. in (Ng
and Cardie 2002; Snow et al. 2007)), this remains a small
contribution compared to what could be achieved with such
gigantic knowledge quantities. This could be explained by
the fact that it is usually hard to take advantage of KB data
in other systems. Indeed, their underlying symbolic frame-
works, whilst being very efficient for their original purpess

are not flexible enough to be fruitfully exported, espewiall
to statistical learning approaches.

In this paper, we study an original way of leveraging the
structured data encompassed by KBs into statistical learn-
ing systems. Our work is based on a model that learns to
represent elements of any KB into a relatively low (e.g. 50)
dimensional embedding vector space. The embeddings are
established by a neural network whose particular architec-
ture allows to integrate the original data structure witthie
learnt representations. More precisely, considering ghat
KB is defined by a set of entities and a set of relations be-
tween them, our model learns one embedding for each en-
tity (i.e. one low dimensional vector) and one operator for
each relation (i.e. a matrix). Furthermore, we show that us-
ing Kernel Density Estimation in the low dimensional em-
bedding space allows one to estimate the probability densit
within that space, so that the likelihood of a relation betwe
entities can be quantified, even when that tentative fact was
not previously in the KB. Low dimensional spaces are ap-

cesses, promising progress has been accomplished and sevpropriate for achieving good results with a density estonat
eral KBs, which encompass a huge amount of data regarding because such an estimator can misbehave in high dimensions

general and specific knowledge, are now readily available
on-line: OpenCyc, WordNet, Freebase, DBpedialetc.
These KBs have been conceived for differing purposes,
ranging from approaching human-like reasoning, producing
an intuitively usable dictionary or proposing a global arel
information resource fosemantic welapplications. How-
ever, their highly-structured and organized data could als
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if there exists no smooth low-dimensional manifold captur-
ing the distribution (Bengio, Larochelle, and Vincent 2D06

As we detail in the following, this new framework is ap-
pealing for several reasons: it is flexible (simple to adapt t
many KBs), compact (only a low-dimension vector per en-
tity and a low-dimension matrix per relation type to store)
and also exhibits generalization ability (the ability tdein
new relations from the existing ones in the KB). Moreover,
such representations potentially allow integration of KBs
within systems of the recent machine learning trend of Deep
Learning (see (Bengio 2009) for a review), as, for instance,
those concerning NLP (Collobert and Weston 2008).



Table 2:Relation typesof KBs used in this paper.

Table 1:Statisticsof datasets used in this paper.

— - Freebase WordNet
Dataset || Rel. types| Entities | Train ex | Test ex “placelived Synsetdomaintopic
WordNet 11 55,166 | 164,467| 4,000 _place.of birth _domainregion
Freebase 13 81,061 | 356,517| 4,000 _place of death _domaintopic
_profession _haspart
This paper is organized as follows. We first define our _spouse _part_of
framework and discuss some related work. Then we intro- -parents -type.of
duce our model as well as its training protocol and display -children -hasinstance
an empirical illustration of its potential on data from Werd -religion -subordinateinstanceof
Net and Freebase. Finally, we present how this method can -ethnicity -similar to
. _gender _memberholonym
be extended to automatically extract knowledge from text. “causeof death “membemeronym
_nationality
Framework _educationinstitution

Definitions This work considers Knowledge Bases as
graphs. This means that the data structure of KBs is not
necessarily hierarchical, and is just defined by a set of iode
and a set of links. To each individual node of the graph
corresponds an element of the database, which we term an
entity, and each link definesralation between entities. Re-

or (Lautal, _hasinstance _s.u.v_1). As WordNet is com-
posed of words with different meanings, here we term its
entities as the concatenation of the word and an number in-
dicating which sense it refers to i.eauto.l is the entity
encoding the first meaning of the word “auto”.

lations are directed and there are typically several difier

kinds of relations. In the remainder of the paper, a relation R_elated Work

is denoted by a tripletef, 7, "), wheree! is theleft entity, Sutskever, Sal_ak_hutdlnov, and Tenenbaum (2009) proposed
¢” theright one and- thetypeof relation between them. the closest existing work that we know of. They propose

general graph, the majority are based on an ontology. We Parametric Bayesian clusterlr]g frameworl_<. Th_e|r method
are aware that transforming such complex hierarchicatstru i based on multiple embeddings per entity which our ex-
tures into a somewhat flat graph structure may cause a lossPeriments indicate might be bad for generalization. Indeed
of information and could forbid the use of any reasoning and in this paper is written: “The disadvantage of using two vec-
deduction protocol that could be applied on the original on- tors for each object is that the model cannot as easily captur
tology. However, our major goal is to propose a way to take the position-independent properties of the object, esfigci
advantage of the content of KBs to be exploited in other sys- in the sparse regime'Linear Relational Embedding®ac-
tems, and not to replace their original framework. Our work canaro and Hinton 2001) are also inspiring for this work but

can actually be seen as complementary. with a different loss function and architecture and have onl
been applied to small arithmetic and “family relation” task
Datasets We chose to illustrate our work on two KBs: Several works have been targeting KBs to improve per-

WordNet and Freebase. WordNet is directly formulated as a formance. For example, the approach of Singh and Gor-
graph. In this case we considered all the entities that were don (2008) aims at jointly modeling a relational database
connected with the relation types given in Table 2, although and an item-users rating matrix to improve collaborative fil
we did remove some entities for which we have too little tering. In (Bickner et al. 2002), knowledge is encoded via
information (see below). Freebase is also directly formal- semantic networks to improve signal processing. Most work
ized as a graph. However, for simplicity of the experiments of this kind regards natural language processing (NLP), ei-
we did not consider the whole of the KB (several millions ther to improve word-sense disambiguation (McRoy 1992),
of entities). Instead, we restricted ourselves to entities  co-reference resolution (Ng and Cardie 2002) (using Word-
the Freebase typdeceased peopland considered the sub-  Net) or grammar induction (Naseem et al. 2010) (using a
graph defined by all relations involving at least one entity o small base of linguistic knowledge). The present paper pro-
this type. For each dataset, we only kept triplets regarding poses a new tool to ease the use of KB data in other methods.
entities involved in at least 3 relations and relation tyaps The embedding idea has been used in NLP via the frame-
pearing at least 5,000 times. We also created 2 correspond-work of language models (Bengio et al. 2003) where an em-
ing test sets by randomly picking 4,000 triplets and with- bedding per word is learnt. Collobert and Weston (2008)
holding them at training time. These triplets contain ésgit showed that such representations help to improve perfor-
appearing in other relations of the training set. mance on standard NLP tasks. A similar idea has been suc-
The final statistics of both datasets are given in Ta- cessfully applied by Weston, Bengio, and Usunier (2010)
ble 1 and the corresponding relation types in Table 2. for matching queries and images, both mapped to a com-
Examples of relations appearing in the Freebase set aremon semantic space, also leading to meaningful data rep-

(_marylinnmonroe _profession _actres$, (_pablopicasse resentations and state-of-the-art results. Bordes e2@10)
_placeof_birth, _-malaga) or (john.f_kennedy _religion, adapted this model to a (very) small custom KB for language
_catholicisn), and in the WordNet set: _door.1, understanding. All these works demonstrate that encoding

_haspart, _lock 2), (_brain_1, _typeof, _neuralstructurel) data in distributed embeddings induce gains in performance



Embedding Knowledge Bases
Structured Embeddings

The main idea behind our structural embedding of KBs is
the following.

e Entities can be modeled incadimensional vector space,
termed the “embedding space”. TH& entity is assigned
avectorE; € R,

¢ Within that embedding space, for any given relation type,
there is a specific similarity measure that captures that re-
lation between entities. For example, tipart_of relation
would use one measure of similarity, wheresigilar_to
would use another. Note that these similarities are not
generally symmetric, as e.gpart.of is not a symmetric
relation. We model this by assigning for th&" given
relation a pairRy, = (R}'*, R;"*), whereR"* and R’
are bothd x d matrices. The similarity function for a given
entity is then defined as:

Sk(E;, Ej) = ||RI*E; — Ri™Ej||,

using thep-norm. In this work we chosg = 1 due to the
simplicity of gradient-based learning in that case. That is
we transform the entity embedding vectdfsand E; by

the corresponding left and right hand relation matrices for
the relationR; and then similarity is measured accord-
ing to the 1-norm distance in the transformed embedding
space.

Neural network architecture The above description can
in fact be modeled as a kind of neural network, in particu-

and
l r l T
f(eivriaei)<f(eivrivej)7 Vj (ezvrzv ])¢LL‘ (2)

The function f is trained to rank the training samples
below all other triplets in terms of 1-norm distance. It is
parametrized by the following neural network:

(el rinef) = [[RIBv(el) — R Bo(el)li. (3)
R'™s andR™* are bothd x d x D, tensors, where e.g?!
means to select th&#" component along the third dimen-
sion of R, resulting in ad x d matrix. F is ad x D,
matrix containing the embeddings of the entities and the
functionv(n) : {1,...,D.} — RP- maps the entity dictio-
nary indexn into a sparse vector of dimensidh, consisting
of all zeros and a one in the” dimension. Hence, Equa-
tion (3) means: (1) select the!)®" and(e?)®" columns of
E, (2) transform them by thé x d left- and right-hand side
matrices of relation;, and (3) measure the 1-norm distance
between these relation-transformed entity embeddings.

Note that the matriXe which contains the representations
of the entities is learnt via multi-taskingprocess because a
single embedding matrix is used for all relations. The em-
bedding of an entity contains factorized information cognin
from all the relations in which the entity is involved. Sor fo
each entity, the model is forced to learn how it interactfiwit
other entities with respect to all the types of relation.

This also causes our distributed representation to berrathe
cheap in memory and to have the ability of potentially scal-
ing to large KBs. Indeed, dimensions bfared x D, and

lar it can be seen as a generalization of a siamese network R"** and R™"* are of dimensionl x d x D, whered is usu-

(Bromley et al. 1993; Hadsell, Chopra, and LeCun 2006)
which conventionally takes a pair of inputs and tries torlear
a similarity measure. In our case, however, we are learning
several similarity measures (one per relation type), aed th
similarity measures are potentially non-symmetric, which
not normally the case in siamese nets.

Let us now more formally define our problem. We are
given a training set of m triplets:

xry =

l r l r
(615T1’€1)7 sy Im = (enurmaem)?
l r
where (e;, 7, €]

e X ={l...,D.} x{1,...,D,} x
{1,...,D.} andD, is the number of possible entities in the
database and,. is the number of possible relations in the
database. That is, the triplets index the dictionary oftiexsti
and relation types.

To find ausefulembedding we must define a training ob-
jective that learns relationships. Our training objectise
thus defined as follows: if one of the the left- or right-hand
side entities of a given triplet were missing, then we would
like our model to be able to predict the correct entity. For
example, this would allow us to answer questions like “what
is part of a car?” or “where was Audrey Hepburn born?”.
That is, we wish to learn a real-valued functip(et, r;, e?)
(which we will also equivalently write ag(z;)) such that
for any training tripletz;:

f(el”’l"“ z)<f(6 TZ',G?;) v.] (]7T1761)¢z (1)

ally small, e.g. 50 dimensional.

Training

To train the parameterB'"*, R™"* and E of our model we

use stochastic gradient descent (SGD) (Robbins and Monro
1951) to optimize the constraints (1) and (2). That is, we
iterate the following procedure:

1. Select a positive training triplet at random.

2. Select at random either constraint type (1) or (2). If
we chose the first constraint we select an entityf €
{1,...,D.} at random and construct a negative train-
ing triplet ™9 = (e"°9,r;,el) otherwise we construct

"9 = (eé,n, e"¢9) instead.

3. If f(x;) > f(z™9) — 1 then make a gradient step to min-
imizemax(0,1 — f(z™9) + f(z;)).
4. Enforce the constraints that each colufidy|| = 1, Vi.

The above procedure is iterated for a given fixed number
of iterations. The constantused in step (3) is the margin
as is commonly used in many margin-based models such as
SVMs (Boser, Guyon, and Vapnik 1992). The gradient step
requires a learning rate of. The normalization in step (4)
helps remove scaling freedoms from our model (where, for
example,E can be made smaller whilg'** and R""* can
be made larger and still give the same output).



Probability Landscape Estimation

The approach described above allows one to learn a dis-
tributed representation for any kind of KB data. However
it has the weakness that it somewhat dilutes some crucial
information which is given by the training triplets from the
KB. Indeed, a key property of the symbolic framework of
the original KBs is that one is certain that all existing re-
lations are true facts. When we transfer this data in our

embedding space we lose that guarantee because any triple,

whether it exists in the original KB or not, is associated a
distance valuef given by Equation (3). Even if the train-
ing process is expected to decrease thelue on training
points, we would like to emphasize their degree of certainty
Hence, after training the structured embeddings, we pepos
to estimate the probability density at any point of the define
embedding space using Kernel Density Estimation (KDE).
Because KDE bases its estimation on the training points, thi
guarantees that they get a high probability density, whéch i
exactly what we are looking for.

Our kernel density estimation uses the following Gaussian
kernel which is defined for any pair of triplets;, z,;) and
is based on the learnt embeddings:
(||R*Ev(er) — R Ev(e;) [|3
+[|RC Bu(e]) — Ry Ev(ef)|13))
The kernel density estimatg, . is then defined as

K (i, 35)= 5. exp (553

1
fkde(xi)zsi_ > K(wi,xj) 4)
| ($1)| z;€S5(x;)
with S(z;) = {(e},rj.ef) € x :rj =i A(ey = el vef =

e;)}. Performing the density estimation using all the train-
ing triplets would be very costly (especially on KBs with
hundreds of thousand or millions of entities); for that rea-
son, for a givere’, we computefyq.(«’) only using those
training triplets that share the same relation type and & sim
lar entity (left or right).

Because the functiof.4. can estimate the density for any
triplet, it can also be used to perform predictions. Herfee, t
following formula can predict” corresponding tor(e):

é" = argmax, p_frae((€',7,€)) (5)

Predictions ofe! given (-,e”) or r given !,e") can be car-
ried out in a similar manner. In other words, Equation (5)
can answer the questions “what is part of a car?” (using
WordNet data and =_has partande’ =_auto.1) and “where
was Audrey Hepburn born?” (using Freebase datarand
=_placeof birth and ¢! =_audreyhepburr). Note that the

same mechanism can be used to find multiple answers to the e
guestion, each associated with a score, and these scores can

be converted into probabilities (by normalizing the scdngs
the sum of the scores over all possible symbolic answers).
Predictions could also be done using Equation (3), but using
frae instead off, we hope that answers regarding facts as-
serted in the training set will be more certainly correctr Fo
relations that are not in the training set, but our system be-
lieves may be correct, witlfi,.q. we will obtain a degree of
confidence in that assertion. Furthermore, using protgbili

Table 3: Ranking. Predicted ranks on WordNet (55,166 candi-
dates) and Freebase (81,061 candidates).

WordNet Freebasd
ranke’ | ranke” ranke”
COUNTS Train 662.7| 804.1 541.8
Test 6202.3| 5894.2 804.9
EmB Train 16.2 23.3 -
Test 3414.7| 3380.8 -
EMB /7 Train 13.6 20.9 2.9
Test 97.3 223.0 317.2
EMB ;7+KDE Train 11.8 19.9 1.6
Test 87.8 192.5 314.5

Table 4: Top 10. Rate of predictions ranked in the top 10 ele-
ments on WordNet (55,166 cand.) and Freebase (81,061 cand.).

WordNet Freebasd
ranke’ | ranke” ranke”
COUNTS Train 5.0% 5.0% 0.4%
Test 0.3% 1.3% 1.7%
EmB Train || 76.4% | 75.7% —
Test 4.0% 4.1% -
EMB y7 Train || 83.9% | 82.0% 95.8%
Test 71.7% | 76.7% 14.0%
EmB7+KDE Train || 88.1% | 85.8% 99.2%
Test 64.2% | 68.3% 17.0%

Empirical Evaluation

We now illustrate the properties of the structured embed-
dings via their application on WordNet and Freebase.

Ranking

We first assess the quality of our representations using
the following ranking task: for all training and testing
triplets €!,r,e"), (1) we removee!, (2) we compute densi-
ties frae((e,r,e")) for all e € D., (3) we sort values by
decreasing order, and (4) we record the rank of the correct
entity e!. An identical process is repeated for predictirig
This setting somewhat corresponds to question answering.
We compare our method, denotesl &, ;- +KDE, with 3
counterparts which rank triplets with different procedure

e EMB ;7 uses the same embeddings agsk,;r+KDE
but performs ranking with the 1-norm of Equation (3)
(and sorts in decreasing order).

EmB also ranks with Equation (3) but its embeddings have
been learnt without multi-tasking i.e. there is a different
matrix E for each type of relation. This is much more
costly in memory and did not scale on Freebase.

e CouNTsdoes not perform any learning but only counts
the number of times pairg!( r) and ¢.e") V €, r and
e” appear in the training set. Triplets are then ranked ac-
cording to the score composed by the sum of their 2 cor-
responding pairs.

estimates makes it easier to compose this system with other Although we did not compare to a direct factorization

probabilistic modules.

method like (Sutskever, Salakhutdinov, and Tenenbaum



Table 5:Generalization. Lists ofe” (top) ande’ (bottom) pre-
dicted using B r+KDE after training on WordNet. We re-
moved from the lists all elements from the training set (usually
top-ranked): the predictions below are generalized by the system.

Lists are displayed by decreasing triplet probability density order.
4

e _everestl _brain.1
r _partof _haspart
e” | _north.viethaml _subthalamicnucleusl
_hindukush1 _cladodel
_karakoram1 _subthalamusl
_federal2 _fluid_ouncel
_burmal  _sympathetimervoussysteml
el _judgement3 _thing 13
_delayedaction.1 _transfer5
_experienceb _situation.1
_bawlout 1 _illness 1
_carry_over.1 _cognition1
r _typeof _hasinstance
e’ _deciding1 _languagel

2009) our results comparingMB to EMB ;7 suggest hav-
ing a single embedding per entity performs better than hav-
ing separate embeddings for left and right entities.

Tables 3 and 4 present the results on WordNet and Free-
base (data statistics are given in Table 1) but use different
metrics: Table 3 gives the mean rank over all examples while
Table 4 provides the proportion of correct answers with@ th
top 10 of the list. For training error, we only ranked on 4,000
random training triplets to save time. We do not report the
ranking results concerning the predictionedfon Freebase
because they are not meaningful. Indeed, they end up trying
to answer questions like “who is of gender male?” or “who
is American?” for which they are many correct answers. All

extent, BB exhibits the same behavior since it can almost
replicate the train, but is bad on test triplets. Since both
EmB ), and BvB,,+KDE perform much better on test
examples, we deduce that generalization can only be pos-
sible via multi-tasking. This allows to encode information
coming from different relations in the embeddings of enti-
ties, which can then be exploited by relation operatorss Thi

is a kind of analogy process which seems to be more efficient
on WordNet than on Freebase because the same entities ap-
pear in more different types of relations.

Table 5 illustrates this a bit more by displaying top ranked
entities for 4 WordNet relations. Since we removed any
training examples from these lists, these are analogies per
formed by the system. The chosen entities are not always
exactly correct but do make sense most of the time.

Entity Embeddings

The matrix E is a crucial part of the structured represen-
tation because it factorizes information from all relaton
in which the entity appears. Table 6 shows some nearest
neighboring entities within the embedding space defined by
EmB ;7+KDE for WordNet and Freebase. Distances are
measured directly on the embeddings using the 1-norm.
Entities which are close in that space, exhibit some simi-
larities but, interestingly, these are quite complex. For i
stance, if_lawn_tennisl is close to other sports, the list
of _artist.1 is rather heterogeneous with a kind of artist
(_singerl), professions interacting with artistscfitic_1,
_prospectorl), a role (part_7) and the condition of being
an artist. This also happens withudreyhepburnwho is
associated with other persons sharing different facts with
her (place of birth, profession,...). This table also titates
that our method can learn a good representation for proper

methods based on embeddings share the same hyperparamenouns, something which is usually quite hard for language

ters:d = 50, A = 0.01 and have been trained for5 x 10°
updates (which takes 3 days). For KDEg2 = 0.5.

Results of Tables 3 and 4 show thatvi,;,r and
EmB ,7+KDE perform best. As expected KDE helps on
training examples. The rank is almost perfect on Freebase
and the values are misleading on WordNet. Indeed, the cor-

models such as the one used in (Collobert and Weston 2008).
The two columnsfield_1 and field_2 finally exhibit two

representations for homonyms, something which could be

interesting for an application to word-sense disambiguati

Knowledge Extraction from Raw Text

rect answer is not ranked on top all the time because some 1yis section presents how this work can be adapted for

other training triplets happen to be as correct as the censid
ered test example (i.e. an “auto” does not have a single part)
if training examples are removed from the lists, the ranks on
WordNet become 1.1 fo#! and 1.3 fore”. Hence, KDE
achieves its goal sinceMB ;7+KDE replicates (almost)
perfectly the training KB. However, it hurts a bit generaliz
tion for the top-10 on WordNet, because there is slightly too
much emphasis on training data. Indeed we chose a small
Gaussian width to ensure to encode it well but this is slghtl
detrimental for generalization.

Generalization

Tables 3 and 4 show thatd@NTS can record some informa-
tion about train examples but can not generalize. To some

performance is sensitive th Even if we did not perform an
exhaustive search, we also trigd= 100 which works as well as
d = 50 (but is more costly) and = 20 which is slightly worse.

knowledge extraction from raw text. Exciting progress
has been made recently in this area (Snow et al. 2007;
Carlson et al. 2010). These methods are able to define enti-
ties and relations between them from plain text. We believe
that our structured embeddings could be of some interest
for this task because, as for conventional KBs, they would
provide distributed representations and probability dgns
estimation. Furthermore, our training process scales well
and, since it is based on SGD, is online. It could thus be
conducted together with an incremental process such as the
NELL project (Carlson et al. 2010).

To illustrate that ability, we conducted our own (relativel
simple) knowledge extraction with the following protocol.
First, using the software SENNAwe performed Semantic
Role Labeling, (i.e. for each proposition, label each seman
tic arguments associated with a verb with its grammatical

3Freely available fronml . nec- | abs. coni senna/ .



Table 6:Embeddings Closest entities from those of the top row according to the L1 distanceio&tihbeddings.

_lawn_tennisl _artistl field_1 _field_2 _pablapicasso _audreyhepburn  _painter _stanforduniversity
_badmintonl _critic_1 _yard9  _universalsetl _lin_liang _wil_vangogh _artist _univ._of_california
_squash4 _part7 _picnicareal _diagonal3 _zhoufang _signehasso  _printmaker _city_univ.of_newyork
_baseballl _singerl _centerstagel analysissitusl | -wu.guanzhong __joycegrenfell _visualartist _stanfordlaw_school
_cricket2 _prospectorl _rangell _positive10 _paul.cezanne _gretagarbo _struct_engineer_virginia_union.univ.
_hockey2 _condition3 _edenl _oblique 3 _yvesklein _ingrid_bergman _producer _cornelluniversity
WordNet data Freebase data

Table 7: Knowledge extraction Examples of lists ot” pre-
dicted with the embeddings learnt out of raw textébr"people”.
Lists are displayed by decreasing triplet probability density order.

el people

r build destroy won suffer control

e” | livelihoods icons emmy sores rockelt
homes virtue award agitation stores
altars donkeys everything treatise  emotigns
houses cowboy standings eczema  spending
ramps chimpanzees pounds copd fertility

role) on 40,000 Wikipedia articles and gathered all anno-

tated sentences. Second, we simplified this data by keep-

ing only phrases labeled with semantic roles following the
schemesubjectverb-direct object by removing adjectives,
adverbs and pronouns from theeibjectand direct object
noun phrases and by stemming terb. Finally, we cre-
ated a data set with all the “cleaneslibjectverb-direct ob-
jecttriplets coming from one of the 100 most frequents verb
forms. This left us with 154,438 triplets, with 100 relation
types (verbs) and 23,936 entities (nouns).

We then learned embeddings using the same training
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